Analysis of platelet adhesion to a collagen-coated surface under flow conditions: the involvement of glycoprotein VI in the platelet adhesion.
نویسندگان
چکیده
Platelet adhesion to the exposed surface of the extracellular matrix in flowing blood is the first and critical reaction for in vivo thrombus formation. However, the mechanism of this in vivo platelet adhesion has yet to be studied extensively. One of the reasons for this is the lack of a practical assay method for assessing platelet adhesion under flow conditions. We have devised an assay method (the fluorescent adhesion assay) that is based on the technique originally reported by Hubbell and McIntire (Biomaterials 7:354, 1986) with some modifications to make it more amenable for assaying small samples and have developed an analysis method to quantify the extent of platelet adhesion and aggregation from fluorescence images by using a computer-assisted image analysis system. In our assay, platelet adhesion, expressed as the percentage of the area covered by adhered platelets, was found to increase biphasically as a function of time. In the first phase, platelets interacted with the coated collagen, transiently stopping on the surface; we called this reaction the temporary arrest. In the second phase, platelets adhered much more rapidly and permanently on the surface, and this adhesion was dependent on the shear rate; platelets formed aggregates in this phase. We used our assay to analyze the effects of platelet aggregation inhibitors on platelet adhesion. All three examined inhibitors, EDTA (10 mmol/L), antiglycoprotein (GP) IIb/IIIa, and GRGDS peptide (1 mmol/L), inhibited the second phase adhesion in flowing blood. Furthermore, GPVI-deficient platelets also showed defective second-phase adhesion under the same conditions. These results suggested that GPIIb/IIIa activation and GPVI contribute to the reaction inducing the second phase. The second-phase adhesion has been extensively investigated, and the consensus is that this reaction is mainly attributable to the platelet-platelet interaction. In this report, we were able to detect an earlier reaction, the temporary arrest. This temporary arrest would reflect the fast and weak interaction between platelet GPIb/IX and collagen-von Willebrand factor complexes on the collagen-coated surface.
منابع مشابه
Analysis of the involvement of the von Willebrand factor-glycoprotein Ib interaction in platelet adhesion to a collagen-coated surface under flow conditions.
The requisite initial reaction for in vivo thrombus formation in flowing blood is platelet adhesion to the exposed surface of the extracellular matrix. The contribution of von Willebrand factor (vWF ) in plasma and glycoprotein (GP) Ib on the platelet membrane to platelet adhesion has been well-documented. We have recently developed a procedure (the "flow adhesion assay") for measuring platelet...
متن کاملRole of the glycoprotein Ib-binding A1 repeat and the RGD sequence in platelet adhesion to human recombinant von Willebrand factor.
To assess the relative importance of the glycoprotein (GP) Ib binding domain and the RGDS binding site in platelet adhesion to isolated von Willebrand factor (vWF) and to collagen preincubated with vWF, we deleted the A1 domain yielding delta A1-vWF and introduced an aspartate-to-glycine substitution in the RGDS sequence by site-directed mutagenesis (RGGS-vWF). Recombinant delta A1-vWF and RGGS...
متن کاملInvolvement of glycoprotein VI in platelet thrombus formation on both collagen and von Willebrand factor surfaces under flow conditions.
BACKGROUND We studied the role of glycoprotein (GP) VI in platelet adhesion and thrombus formation on the immobilized collagen and von Willebrand factor (vWF) surface under flow conditions. METHODS AND RESULTS Whole blood obtained from 2 patients with GP VI-deficient platelets and the effects of the Fab of anti-GP VI antibody (Fab/anti-GP VI) were tested. Blood containing platelets rendered f...
متن کاملPlatelet adhesion and aggregation on human type VI collagen surfaces under physiological flow conditions.
Type VI collagen is a subendothelial constituent that binds von Willebrand factor (vWF) and platelets. The interaction of platelets with type VI collagen and the roles of platelet glycoprotein (GP) receptors and vWF were studied under flow conditions using epi-fluorescent videomicroscopy coupled with digital image processing. We found that surface coverage was less than 6% on collagen VI at a r...
متن کاملPlatelet adhesion to collagen and endothelial cell matrix under flow conditions is not dependent on platelet glycoprotein IV.
Platelet membrane glycoprotein IV (GPIV) is a cell-surface glycoprotein that has been proposed as a receptor for collagen. Recently, it has been shown that platelets with the Naka-negative phenotype lack GPIV on their surface, whereas donors with this phenotype are healthy and do not suffer from hematologic disorders. In this study, we compared Naka-negative platelets with normal platelets in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 88 6 شماره
صفحات -
تاریخ انتشار 1996